IPHONE

[image: image5.png]ErE——
Vo
L

Recording
Playback

Socket Overhead
Audio Encoding/Decoding Overhead



 

Developing a voice over IP application

Jeremy Stanley

CS 460 section 1

Project Report

April 16, 2001

Abstract:  In this paper, I will describe the evolution of IPHONE, a PC-to-PC voice communications application.  I will also provide an overview of Voice over IP (VoIP) and its underlying technologies, and discuss the benefits and issues involved in transmitting voice over packet-switched networks.  

Introduction to VoIP

In the early days of the Internet, no one ever imagined sending voice over IP.  However, with recent advances in bandwidth, voice compression algorithms, and raw processing power, transmitting real-time voice over the Internet has become feasible.  Voice over IP offers several potential benefits, including reduced long-distance costs, more efficient bandwidth utilization on phone networks, and enhanced services such as multicasting.  However, these benefits come at a price, since transmitting voice over a packet-switched network isn’t as easy as it sounds.

Advantages of VoIP

The most immediate advantage of sending voice over the Internet is that it can circumvent long-distance telephone fees.  Two users talking through IPHONE, for example, pay only their usual ISP fee, regardless of whether they are in the same building or on different continents.  Charges will probably still apply when using hardware IP phones—phone companies know no other business model, after all—but the use of existing Internet backbones as well as competition with both local and long-distance phone companies will likely lead to lower rates.

Another advantage of VoIP is more efficient network use.  Phone conversations are typically carried in a dedicated 64kbps channel.  IP phones can utilize advanced voice compression techniques to reduce the required bandwidth to 10kbps or less, with little loss in quality.
  Additionally, when silence suppression is used, the average bandwidth requirement is cut in half.  Thus, with VoIP, about 12 times as many calls can be carried over the same physical link.  

VoIP Issues

Voice data has very different characteristics from traditional Internet data.  The Internet was originally designed to carry data such as e-mail and file transfers.  These applications are classified as non-realtime or “elastic” since their performance isn’t seriously affected by increased delay.
  As such, the current infrastructure of the Internet provides no quality of service guarantees, and this hurts VoIP.  Telephone applications quickly become unusable with a large network delay.  Conversations become stilted, and participants tend to “collide” with each other.  

Another issue with VoIP is addressing.  Given the current shortage of IPv4 addresses, there certainly won’t be enough to go around once we start giving them to telephones.  IPv6 and its 128-bit address space will solve this problem, and will provide other benefits to VoIP as well.
  These include quality of service, security, “anycast” addressing, and automatic configuration.

Introduction to IPHONE

IPHONE is a PC-to-PC Internet telephone application written for Win32.  It makes use of the Windows Multimedia and Sockets APIs for audio and network communications, respectively.  I originally used TCP as a transport protocol, since I had prior experience with it, and it makes it easy to establish a virtual connection analogous to a phone call.  I soon switched to UDP for performance reasons.  The same reliability features that make TCP an effective protocol for transferring files and e-mail get in the way when delivering audio.  It’s probably better to ignore a dropped audio frame than to wait for it to be retransmitted—in my application, this would be trading up to a second of silence for an 80-millisecond blip.  The web article A Review of Video Streaming over the Internet puts it this way: “Reliable message delivery is unnecessary for video and audio—losses are tolerable and TCP retransmission causes further jitter and skew.”
  

The First Algorithm

[image: image1.jpg]


[image: image4.png]Vo

Recording
Playback

Socket Overhead
Audio Encoding/Decoding Overhead



In my discussion, I will start at the beginning and describe how IPHONE evolved.  (The final algorithm is shown in Figure 3 at the end of this report.)  My goal when writing the application was simply to transfer sound both directions between two computers.  My first algorithm was very simple.  I launched two threads, one of which repeatedly recorded a chunk of audio and then sent it over a socket, while the other repeatedly received a chunk of audio and then played it.  As I expected, this resulted in very choppy sound.  However, it also resulted in latency that rapidly increased beyond usable levels.  In fact, when testing this version of IPHONE with someone in an adjacent room, I was able to say “Hello”, walk down the hall to the other computer, and arrive there before my greeting.

This delay was caused by the speed difference between the two computers.  One machine spent less time encoding and transmitting packets than the other did receiving and decoding them, but they were played back at the same rate at which they were recorded.  Therefore, the receiving machine got behind as entire seconds of audio data were buffered by the protocol stack (See Figure 1).  I solved this problem by doing four things at once instead of two: I encoded and transmitted the prior frame of audio while recording the current one, and I received and decoded the next audio frame while playing the current one.  (See Figure 2).

Coping with Network Jitter

The algorithm just described worked well on a LAN, but as soon as I tried it over the Internet, I was once again plagued with ever-increasing latency.  This was caused by non-uniform amounts of transmission delay (jitter).  The receiving side played data as soon as it arrived, but if the next frame was not available when it finished playing, it would block until the frame arrived.  These delays might be miniscule, but they add up fast—in my experience, latency increased to over eight seconds just one minute after the call started.

Additional buffering on the receiving side helped, but it did not solve the problem.  It’s difficult to predict how large the buffer would need to be to absorb all network delays.  In fact, no matter how large the buffer is, there’s no guarantee it won’t be emptied.  Having a large receive buffer is also undesirable since it adds to latency.  Therefore, there needs to be another method of allowing the receiver to catch up to the sender.  I chose to implement silence suppression to solve this problem.  When the speaker stops speaking, the packets stop flowing, and the receiver has the chance to catch up.

Silence Suppression

Since each participant in a phone conversation usually spends less than half of the time talking, it makes since to stop transmitting data when the speaker stops speaking.  This bandwidth-saving technique is particularly effective in conference calls, where many people participate but only one speaks at a time.  I took a rather simple approach detecting silence: before sending a packet, I computed the maximum amplitude of the audio frame, and discarded it if it was less than a certain “silence threshold” (adjustable by the end-user via a slider control; see Figure 4 at the end of this report).  

I found that implementing silence suppression properly required some changes to my buffering technique.  My first problem stemmed from the fact that the listener’s receive buffer emptied out when the speaker stopped talking.  When the speaker resumed, the receiver would begin playing packets as soon as they arrived.  This resulted in choppy audio, since the receive buffer never had the chance to fill up again.  I solved this problem by waiting for the receive buffer to fill up again before resuming playback.

Another problem with my original silence suppression algorithm is that it was too sensitive.  It tended to kick in between words (and sometimes during words).  Modifying the algorithm so that it waited for ½ second of silence before cutting off transmission mitigated that problem, and as a bonus it also solved a potential bug in my re-buffering scheme described above.  It guarantees that a short burst of audio (not large enough to fill the receive buffer) is not buffered indefinitely while we’re waiting for the speaker to resume talking.

Voice Encoding

Essential to IP telephony are voice encoding schemes that can compress voice, in real time, to a fraction of its original size.  Most voice encoders fall into one of three categories
:

· Waveform encoders, which attempt to encode sound waves in fewer bits.  Two approaches include companding, which uses a finer sample quantization granularity where the human ear is most sensitive, and delta pulse code modulation, which encodes the change between consecutive sound samples rather than the samples themselves.  Waveform encoders tend to be simple and fast, and provide good quality, but usually don’t compress audio below 32 kbps.

· Source coders or vocoders exploit the fact that the data being compressed typically isn’t arbitrary sound, but a human voice.  Linear predictive coding (LPC) is a representative algorithm.  LPC assumes that each sample is a linear combination of previous samples, and transmits only the coefficients rather than the sound itself.  This algorithm produces intelligible (though robotic-sounding) speech at very low bit rates (as low as 2.4 kbps).  

· Hybrid encoders use some combination of the above techniques to produce more natural sounding speech at relatively low bit rates (typically around 10 kbps).  Hybrid encoding algorithms are complex and processor-intensive, and have only become feasible for real-time use within the past few years.  In fact, a popular hybrid encoder known as CELP (code-excited linear predictive), when it was invented in 1985, took almost a minute and a half to encode one second of speech—on a Cray-1 supercomputer!

In my application, I made use of an open-source implementation of GSM provided by the University of Berlin.
  GSM is a hybrid encoder used in the European mobile phone network, and it provides near-telephone quality at 13 kbps.  

Advanced VoIP Topics

Comfort Noise

People become accustomed to background noise during a phone call.  When it suddenly stops (i.e., due to silence suppression), they will likely believe the line has gone dead.  I can get used to this behavior with IPHONE, but it’s not acceptable for commercial IP phones.  Therefore, they play “comfort noise” while the speaker is not transmitting.  Simpler models just play back low-volume white noise, while more advanced ones repeat portions of background noise recorded during the conversation.  The G.723.1 audio codec actually compresses background noise at a low bit rate, and stops transmitting entirely if it doesn’t change a significant amount.
  

Echo Canceling

One telephony issue which is aggravated by VoIP’s latency is echoing.  As one party’s voice is played by the remote party’s loudspeaker, it can be picked up by the remote microphone and sent back to the talker.  A simple approach at mitigating this issue is to cut one participant’s sending volume while the other is talking.  This technique is known as echo suppression, and is used by low-end mobile phones.  More advanced echo cancellers attempt to predict echoes and filter them out of the signal.  The longer the potential delay between original speech and echoes, the more complex and expensive these devices become.

Conclusion

I consider the IPHONE project to be an unqualified success.  Transmitting and receiving continuous audio over a network proved to be more complicated than I expected, but in my efforts to make it work well, I gained a lot of firsthand experience in network, multimedia, and real-time programming.  What’s more, I ended up with a viable Internet phone application.  I’ve talked over IPHONE for hours at a time, and I’ve even used it to talk long distance.  I’ve also found that, if I increase its buffer sizes substantially, IPHONE does a good job transmitting CD-quality sound over a LAN.  

[image: image2.png]Analog to Digital
i Converter R R N
(PC Sound Card)

Voice Digital Audio Packetized Encoded
(PCM)

Transmitted

Digital to Analog
I _. | converter

(PC Sound Card)

Received  pecoded and PCl
Buffered

Voice




Figure 3: A summary of IPHONE's algorithm

[image: image3.jpg]Pickone e e £

Commest
Bemote Host Port Sampiing ate (Hz] Buffer size (bytes]
[z ||| || | T

€ Wait for call Audio Format Buifer count

& Makecal

ook
Tasms

Status: Nt connicted

GSM (13Kbps) =

Sience thieshold =

Transport Protocl —

Sofer Louder





Figure 4: A screen shot.

The audio format, sampling rate, buffer parameters, and transport protocol are set by the client before making the call.  This information is transmitted to the server when the connection is made.  The silence threshold is independent for each party and is adjustable during the call via a slider control.  The green light turns on when the application “hears” the user.

Figure 1: Since the receiver has more per-packet overhead than the sender, latency increases





Figure 2: Performing communication, encoding, and decoding concurrently with recording and playing compensates for timing differences








� Goralski 92-93


� Peterson 489


� Goncalves 6


� Hunter, Section 4


� Goralski 85-93


� Ibid, p. 93


� The source code can be downloaded at http://www.cs.tu-berlin.de/~jutta/toast.html


� Hersent, p. 86


� Ibid, p. 206





PAGE  
6

